a weak reflection in compact spaces ?
نویسنده
چکیده
The problem, whether every topological space has a weak compact reflection, was answered by M. Hušek in the negative. Assuming normality, M. Hušek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces.
منابع مشابه
Weak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملStrongly k-spaces
In this paper, we introduce the notion of strongly $k-$spaces (with the weak (=finest) pre-topology generated by their strongly compact subsets). We characterize the strongly $k-$spaces and investigate the relationships between preclosedness, locally strongly compactness, pre-first countableness and being strongly $k-$space.
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملSpaces with compact-countable weak-bases
In this paper, we establish the relationships between spaces with a compact-countable weak-base and spaces with various compact-countable networks, and give two mapping theorems on spaces with compact-countable weakbases. Weak-bases and g-first countable spaces were introduced by A.V.Arhangel’skii [1]. Spaces with a point-countable weak-base were discussed in [5,6], and spaces with a locally co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010